Part Number Hot Search : 
2SC18 1210HF 15E24BL2 L5242 18R106 2010A LVXC3245 PT21735
Product Description
Full Text Search
 

To Download IRFH7004PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  rohs compliant containing no lead, no bromide, and no halogen applications  brushed motor drive applications  bldc motor drive applications  battery powered circuits  half-bridge and full-bridge topologies  synchronous rectifier applications  resonant mode power supplies  or-ing and redundant power switches  dc/dc and ac/dc converters  dc/ac inverters 25 50 75 100 125 150 t c , case temperature (c) 0 50 100 150 200 250 300 i d , d r a i n c u r r e n t ( a ) limited by package 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0.0 2.0 4.0 6.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) i d = 100a t j = 25c t j = 125c 
    pqfn 5x6 mm 
















  orderable part number form quantity IRFH7004PBF pqfn 5mm x 6mm tape and reel 4000 irfh7004trpbf base part number package type standard pack v dss 40v r ds(on) typ. 1.1m . 1. i d (silicon limited) 259a i d (package limited) 100a

















 
    calculated continuous current based on maximum allowable junction temperature. package is limited to 100a by production test capability. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.  
   repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.038mh r g = 50 , i as = 100a, v gs =10v.  i sd 100a, di/dt 1366a/ s, v dd v (br)dss , t j 150c.  pulse width 400 s; duty cycle 2%.  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . when mounted on 1 inch square 2 oz copper pad on 1.5 x 1.5 in. board of fr-4 material.
       this value determined from sample failure population, starting t j = 25c, l= 0.038mh, r g = 50 , i as = 100a, v gs =10v. static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 ??? ??? v v (br)dss / t j breakdown voltage temp. coefficient ??? 0.033 ??? v/c r ds(on) static drain-to-source on-resistance ??? 1.1 1.4 m ??? 1.7 ??? m v gs( th) gate threshold voltage 2.2 3.0 3.9 v i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 2.4 ??? conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1.0ma v gs = 10v, i d = 100a  v ds = v gs , i d = 150 a v gs = 20v v gs = -20v v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c v gs = 6.0v, i d = 50a  absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v t j operating junction and t stg storage temperature range avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj e as (tested) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r jc (bottom) junction-to-case 0.5 0.8 r jc (top) junction-to-case ??? 15 r ja junction-to-ambient  ??? 34 r 10  ??? 21 c/w a c 191 see fig. 14, 15, 22a, 22b 156 max. 259  164  1247 100 314 -55 to + 150 20 1.3





 











  
 s d g dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 117 ??? ??? s q g total gate charge ??? 129 194 nc q gs gate-to-source charge ??? 34 ??? q gd gate-to-drain ("miller") charge ??? 40 ??? q sync total gate charge sync. (q g - q gd ) ??? 169 ??? t d(on) turn-on delay time ??? 15 ??? ns t r rise time ??? 51 ??? t d(off) turn-off delay time ??? 73 ??? t f fall time ??? 49 ??? c iss input capacitance ??? 6419 ??? pf c oss output capacitance ??? 952 ??? c rss reverse transfer capacitance ??? 656 ??? c oss eff. (er) effective output capacitance (energy related) ??? 1161 ??? c oss eff. (tr) effective output capacitance (time related) ??? 1305 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 100 a (body diode) i sm pulsed source current ??? ??? 1247 a (body diode)  v sd diode forward voltage ??? 0.95 1.3 v dv/dt peak diode recovery  ??? 2.5 ??? v/ns t rr reverse recovery time ??? 35 ??? ns t j = 25c v r = 34v, ??? 35 ??? t j = 125c i f = 100a q rr reverse recovery charge ??? 26 ??? nc t j = 25c di/dt = 100a/ s  ??? 27 ??? t j = 125c i rrm reverse recovery current ??? 1.5 ??? a t j = 25c i d = 30a v dd = 20v i d = 100a, v ds =0v, v gs = 10v conditions v ds = 10v, i d = 100a v ds =20v i d = 100a p-n junction diode. mosfet symbol showing the r g = 2.7 v gs = 10v  t j = 175c, i s = 100a, v ds = 40v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0 mhz v gs = 0v, v ds = 0v to 32v  v gs = 0v, v ds = 0v to 32v  t j = 25c, i s = 100a, v gs = 0v  integral reverse

















  
 fig 3. typical output characteristics fig 5. typical transfer characteristics fig 6. normalized on-resistance vs. temperature fig 4. typical output characteristics fig 8. typical gate charge vs. gate-to-source voltage fig 7. typical capacitance vs. drain-to-source voltage 3 4 5 6 7 8 9 v gs , gate-to-source voltage (v) 1.0 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 150c v ds = 10v 60 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 100a v gs = 10v 0.1 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 20 40 60 80 100 120 140 160 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 100a 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.0v 4.5v bottom 4.25v 60 s pulse width tj = 25c 4.25v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.25v 60 s pulse width tj = 150c vgs top 15v 10v 8.0v 7.0v 6.0v 5.0v 4.5v bottom 4.25v





 











  
 fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy fig 13. typical on-resistance vs. drain current 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 1.0 10 100 1000 10000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature ( c ) 40 41 42 43 44 45 46 47 48 49 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 1.0ma 0 200 400 600 800 1000 1200 1400 i d , drain current (a) 0 10 20 30 40 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) v gs = 5.0v v gs = 6.0v v gs = 7.0v v gs = 8.0v v gs =10v 0 5 10 15 20 25 30 35 40 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 e n e r g y ( j ) v ds = 0v to 32v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 10msec 1msec operation in this area limited by r ds (on) 100 sec dc limited by package

















  
 fig 14. maximum effective transient thermal impedance, junction-to-case fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 100a 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 125c. allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 125c and tstart =25c (single pulse)





 











  
 

 !
"
#
"$
%  &% fig 17. threshold voltage vs. temperature 


 !
'%
#()
"$
%  &% 

 !
"
#
"$
%  &%  

 !
'%
#()
"$
%  &% -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 2.0 3.0 4.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 150 a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 i r r m ( a ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 i r r m ( a ) i f = 100a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 50 100 150 200 250 300 q r r ( n c ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 50 100 150 200 250 q r r ( n c ) i f = 100a v r = 34v t j = 25c t j = 125c

















 * 
 fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 22. +,
-%
"
%"&%
$
#
for n-channel hexfet 
power mosfets  
      ? 
     ?     ?

         p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period .   !"  # $%#&'&% . + - + + + - - -       ?        !  ?   " #$## ?        %  && ? #$##'$

    v ds 90% 10% v gs t d(on) t r t d(off) t f  ( ) 1 *  %   0.1 %      '(  + -   1k vcc dut 0 l 





 











 / 
 pqfn 5x6 outline "b" package details pqfn 5x6 outline "b" part marking xxxx xywwx xxxxx international rectifier logo part number (?4 or 5 digits?) marking code (per marking spec) assembly site code (per scop 200-002) date code pin 1 identifier lot code (eng mode - min last 4 digits of eati#) (prod mode - 4 digits of spn code) )  *  * *+  **$,*%*$ ***%% * *, % ** 
- ./ 0/11222% 1%0*% * 1* 1* -. )  *  * *%3$*% *%0*4, % ** 
"/ 0/11222% 1%0*% * 1* 1* "  
     
 
  

       0/11222% 1%3$1

















  
 ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ 0
1
$%%$

2
%


3$
2
$4
(!4&& &!%&2 & 00
5!!2
"$

6-6#
$%%

(
 

!%
$  
   

 

  
  pqfn 5x6 outline "b" tape and reel ms l 1 (per je de c j-s t d-020d ?? ) rohs c ompliant yes (per je de c je s d47f ?? guidelines ) qualification information ? industrial qualification level moisture sensitivity level pqfn 5mm x 6mm


▲Up To Search▲   

 
Price & Availability of IRFH7004PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X